On the Recursive Sequence

نویسنده

  • E. CAMOUZIS
چکیده

For all values of the parameter γ, (1.1) has a unique positive equilibrium x̄ = (γ + 1)/2. When 0 < γ < 1, the positive equilibrium x̄ is locally asymptotically stable. In the case where γ = 1, the characteristic equation of the linearized equation about the positive equilibrium x̄ = 1 has three eigenvalues, one of which is −1, and the other two are 0 and 1/2. In addition, when γ = 1, (1.1) possesses infinitely many period-two solutions of the form {a,a/(2a− 1),a,a/(2a− 1), . . .} for all a > 1/2. When γ > 1, the equilibrium x̄ is hyperbolic. The investigation of (1.1) has been posed as an open problem in [1, 2]. In this paper, we will show that when 0 < γ < 1, the interval [γ,1] is an invariant interval for (1.1) and that every solution of (1.1) falling into this interval converges to the positive equilibrium x̄. Furthermore, we will show that when γ = 1, every positive solution {xn}n=−2 of (1.1) which is eventually bounded from below by 1/2 converges to a (not necessarily prime) period-two solution. Finally, when γ > 1, we will prove that (1.1) possesses unbounded solutions. We also pose some open questions for (1.1). We say that a solution {xn}n=−k of a difference equation is bounded and persists if there exist positive constants P and Q such that

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit distribution of the degrees in scaled attachment random recursive trees

We study the limiting distribution of the degree of a given node in a scaled attachment random recursive tree, a generalized random recursive tree, which is introduced by Devroye et. al (2011). In a scaled attachment random recursive tree, every node $i$ is attached to the node labeled $lfloor iX_i floor$ where $X_0$, $ldots$ , $X_n$ is a sequence of i.i.d. random variables, with support in [0,...

متن کامل

On the Multiplicative Zagreb Indices of Bucket Recursive‎ ‎Trees

‎Bucket recursive trees are an interesting and natural‎ ‎generalization of ordinary recursive trees and have a connection‎ to mathematical chemistry‎. ‎In this paper‎, ‎we give the lower and upper bounds for the moment generating‎ ‎function and moments of the multiplicative Zagreb indices in a‎ ‎randomly chosen bucket recursive tree of size $n$ with maximal bucket size $bgeq1$‎. Also, ‎we consi...

متن کامل

The eccentric connectivity index of bucket recursive trees

If $G$ is a connected graph with vertex set $V$, then the eccentric connectivity index of $G$, $xi^c(G)$, is defined as $sum_{vin V(G)}deg(v)ecc(v)$ where $deg(v)$ is the degree of a vertex $v$ and $ecc(v)$ is its eccentricity. In this paper we show some convergence in probability and an asymptotic normality based on this index in random bucket recursive trees.

متن کامل

AIOSC: Analytical Integer Word-length Optimization based on System Characteristics for Recursive Fixed-point LTI Systems

The integer word-length optimization known as range analysis (RA) of the fixed-point designs is a challenging problem in high level synthesis and optimization of linear-time-invariant (LTI) systems. The analysis has significant effects on the resource usage, accuracy and efficiency of the final implementation, as well as the optimization time. Conventional methods in recursive LTI systems suffe...

متن کامل

Modified Impedance-Based OOS Protection Based on On-Line Thévenin Equivalent Estimation

In this paper, a novel approach based on the Thévenin tracing is presented to modified conventional impedance-based out-of-step (OOS) protection. In conventional approach, the OOS detection is done by measuring positive sequence impedance. However, the measured impedance may be change due to different factors such as capacitor bank switching and reactive power compensators that it can cause the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005